T.D. $n^{\circ}9$: Résolution de l'équation f(x) = 0 par la méthode de Newton

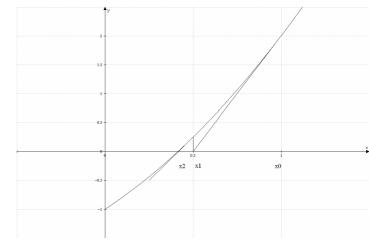
On considère une fonction f définie et dérivable sur [a;b], telle que f ' ne s'annule pas sur [a;b]. On admet que l'équation f(x) = 0 admet une unique solution $\alpha \in [a;b]$.

Comme pour la méthode de dichotomie,on cherche à approcher α par une suite (x_n) qui converge rapidement vers α .

Principe : Graphiquement, on cherche l'intersection de la courbe de f avec l'axe des abscisses. Or, on sait que localement, la tangente à la courbe est une bonne approximation de la courbe. De plus, on peut déterminer facilement l'intersection d'une tangente avec l'axe des abscisses.

Méthode : On prend $x_0 \in [a;b]$: on détermine l'équation de la tangente (T_0) au point d'abscisse x_0 , et on cherche le point d'intersection de (T_0) avec l'axe des abscisses. On note x_1 l'abscisse de ce point.

De façon générale, si x_n est défini : Soit (T_n) la tangente à la courbe au point d'abscisse x_n . x_{n+1} est alors l'abscisse de l'intersection de (T_n) et de l'axe des abscisses.



Etude mathématique:

Soit (T_n) la tangente au point d'abscisse x_n .

Déterminer l'intersection de (T_n) avec l'axe des abscisses, et en déduire l'expression de x_{n+1} en fonction de x_n .

Exemples informatiques:

Exercice 1

On considère ici la fonction f définie dans l'exercice 1 du T.D. $n^{\circ}8$: $f(x) = 3x - e^x$.

On a montré que l'équation f(x) = 0 admet une unique solution sur [0;1]

On considère la suite (x_n) construite par la méthode de Newton. (on prendra $x_0 = 0$)

- 1) Donner la formule de récurrence de (x_n)
- 2) Ecrire un programme Pascal qui calcule les termes de la suite (x_n) et les affiche jusqu'à ce que $|f(x_n)| \le 10^{-6}$,
- 3) Par dichotomie, avec le même test d'arrêt ($\left|f(a_n)\right| \le 10^{-6}$), on trouve n=18).

Comparer la méthode de Newton à la méthode par dichotomie.

Exercice 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 2$.

Ecrire un programme qui effectue la méthode de Newton pour f, avec $x_0 = 2$, et s'arrête lorsque $|f(x_n)| \le 10^{-9}$, et qui affiche les valeurs de n et x_n correspondantes.

Remarque:

La méthode de Newton est en général beaucoup plus rapide que la dichotomie, mais la convergence est plus dure à prouver, et demande des hypothèses plus restrictives sur f.