0ECE1 - Programme de colle Semaines 23 et 24

Chapitre 18: Les espaces vectoriels

- _ définition (intuitive) d'un espace vectoriel.
- _ définition d'un sous-espace vectoriel
- _ l'ensemble des solutions d'un système linéaire homogène est un sous-espace vectoriel.
- _ combinaison linéaire de vecteurs, sous-espace vectoriel engendré par une famille $X_1, ..., X_n$ (noté $Vect(X_1, ..., X_n)$)
- _ famille libre, famille génératrice, base, coordonnées dans une base
- _ base canonique de \mathbb{R}^n , de $M_{n,p}(\mathbb{R})$, de $\mathbb{R}_n[X]$.
- _ notion de dimension, $dim(\mathbb{R}^n) = n$, une famille libre de n vecteurs dans un espace vectoriel E de dimension n forment une base de E.
- _ définition d'une application linéaire
- _ Toute application : $X \longmapsto MX$ (avec M une matrice) est une application linéaire. Matrice d'une application linéaire dans les bases canoniques
- _ Définition de Ker f, Im f. Ker f et Im f sont des sous-espaces vectoriels.
- _ Im $f = Vect(f(e_1), ..., f(e_n))$, où $e_1, ..., e_n$ est la base canonique
- $_f$ injective \Leftrightarrow ker $f = \{0\}$, f surjective \Leftrightarrow Im f = F
- _ Lien entre systèmes linéaires, matrices inversibles et applications linéaires

A venir : Séries