ECE1 : Programme de colle Semaines 5 et 6

Chapitre 4 : Suites numériques

- _ suites linéaires récurrentes d'ordre 2
- _ majorant, minorant d'une suite (exemples de $u_{n+1} = f(u_n)$ avec f croissante)
- sens de variation d'une suite

Chapitre 5 : Convergence d'une suite numérique

- 1) Limite d'une suite
 - _ définition d'une suite convergente, d'une suite qui tend vers + ∞ , vers ∞ .
 - $|u_n L| \le \varepsilon \Leftrightarrow u_n$ est une valeur approchée de L à ε près
 - _ limites de $(n^k)_n$ (k > 0), $(\sqrt{n})_n$, $(n!)_n$, $(q^n)_n$
 - _ opérations sur les limites
- 2) Théorèmes de convergence
 - _ théorèmes de comparaison, théorème des gendarmes
 - _ suites croissantes majorées, suites décroissantes minorées
 - _ si une suite converge vers L, les suites extraites (u_{n+1}) , (u_{n+2}) , (u_{2n}) , (u_{2n+1}) convergent vers L.
 - _ utilisation du point fixe sur des exemples
 - $_$ si (u_{2n}) et (u_{2n+1}) ont la même limite L, (u_n) tend vers L.
 - suites adjacentes

A partir du Mardi 08/11 :

- 3) Relations de comparaison
 - _ définition de $u_n \sim_{+\infty} v_n$ et $u_n =_{+\infty} o(v_n)$ (pour des suites ne s'annulant pas)
 - $\underline{}$ si $u_n = v_n + o(v_n)$ alors $u_n \sim v_n$.
 - _ croissances comparées :

$$\ln^{\alpha}(n) = o(n^{\beta}) \ (\alpha > 0, \ \beta > 0) \quad n^{\alpha} = o(e^{\beta n}) \ (\alpha > 0, \ \beta > 0) \quad n^{\alpha} = o(a^{n}) \ (\alpha > 0, \ a > 1)$$

- _ un polynôme est équivalent à son monôme de plus haut degré, une fraction rationnelle est équivalente au quotient des monômes de plus haut degré.
- $\underline{\quad}$ si $\lim_{n \to \infty} v_n = 0$, alors $\ln(1 + v_n) \sim_{+\infty} v_n$, $\exp(v_n) 1 \sim_{+\infty} u_n$
- _ compatibilité avec produit, quotient, puissance.

Remarques pour les colleurs :

- _ Des exemples de suites définies par : $u_{n+1} = f(u_n)$ ont été traités en exercice, mais nous n'avons aucun théorème sur ce sujet. (le théorème du point fixe sera vu dans le chapitre « continuité », mais les élèves doivent savoir l'utiliser sur des exemples).
- _ Aucun exemple de suite (x_n) définie par $f_n(x_n)=0$ n'a été traité. (attendre le chapitre "continuité")
- _ La notation $u_n = O(v_n)$ n'est pas au programme.

A venir: Dénombrement