Devoir Surveillé n°2 Jeudi 03 Novembre 2011

Le barème est donné à titre indicatif. On donne : $\frac{ln(999)}{ln(2)} \approx 9,96$

Question de cours (1 point) : Enoncer le théorème "des gendarmes"

Exercice 1 (6,5 points)

1) Soit $(u_n)_{n\geq 1}$ la suite définie par : $u_1=-1$ et $u_{n+1}=\frac{1}{2}\,u_n+2 \ \forall \ n\geq 1$.

Déterminer l'expression de u_n en fonction de n.

$$2) \ Soit \ (v_n)_{n \,\geq\, 1} \ la \ suite \ définie \ par : \left\{ \begin{array}{l} v_1 = \text{-}5 \\ v_2 = \text{-}15 \\ \forall \ n \in \ I\!\!N^*, \ v_{n+2} = 3v_{n+1} + 4v_n \end{array} \right. .$$

- a) Déterminer l'expression de (v_n) en fonction de n.
- b) En déduire la limite de (v_n).

3) Soit
$$(w_n)$$
 la suite définie par :
$$\begin{cases} w_0 = 2 \\ \forall n \in {\rm I\! N}, \, w_{n+1} = \frac{w_n}{(n+1)} + \frac{3}{(n+1)!} \end{cases}$$

- a) Déterminer la nature de la suite $(z_n)_{n \in \mathbb{N}}$, définie par : $z_n = n! \times w_n \ \forall \ n \in \mathbb{N}$.
- b) En déduire l'expression de w_n en fonction de n.

Exercice 2 (2,5 points)

Déterminer la limite de : a)
$$u_n = n\left(\sqrt{1 + \frac{1}{n}} - 1\right)$$
 b) $v_n = \frac{n^2 - 3^n}{2^n - \ln(n) + 3}$

Exercice 3 (10 points)

Partie I Soit f la fonction définie sur \mathbb{R} par : $f(x) = x^2 - 2x + 2$

- 1) Etudier les variations de f sur **I**R.
- 2) Déterminer les points fixes de f.

Dans la suite, on considère la suite (u_n) définie par son premier terme $u_0 \in \mathbb{R}$ et la relation :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n^2 - 2u_n + 2$$

Les parties II et III sont indépendantes.

Partie II Dans cette partie, on choisit $u_0 = \frac{3}{2}$.

- 1) Montrer que \forall $n \in \mathbb{N}$, $1 \le u_n \le 2$.
- 2) Etudier le sens de variation de (u_n).
- 3) Montrer que (u_n) est convergente et déterminer sa limite.

Partie III Dans cette partie, on choisit $u_0 = 3$.

- 1) Montrer que \forall n \in \mathbb{N} , $u_n \ge 3$.
- 2) Montrer que \forall $n \in \mathbb{N}$, $u_{n+1} 1 \ge 2(u_n 1)$
- 3) Montrer que \forall n \in IN, $u_n \ge 2^{n+1} + 1$
- 4) En déduire la limite de $(u_n)_{n \in \mathbb{N}}$.
- 5) Déterminer un rang n_0 à partir duquel on est sûr que $u_n \ge 10^3$.