ECE1 Devoir à la maison n°7

On note
$$\beta = \frac{1}{9} e^{1/3}$$
. On $a : \beta \approx 0.155$

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{1-x}{3}e^x$.

- 1°) a. Etudier les branches infinies de f en $+ \infty$ et ∞
- b. Etudier les variations de f.
- c. Etudier la convexité de f. (on précisera les coordonnées du point d'inflexion)
- d. Tracer la courbe de f dans un repère bien choisi.

(on donne
$$\frac{1}{3e} \approx 0.123$$
)

 2°) Montrer que l'équation f(x) = x admet une solution et une seule a sur [0;1].

Vérifier que
$$a \in \left[0, \frac{1}{3}\right]$$
.

- 3°) On considère la suite $(u_n)_{n \in \mathbb{N}}$ déterminée par $u_0 = \frac{1}{3}$ et pour tout entier $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
- a. Montrer que \forall $n \in \mathbb{N}$, $u_n \in \left[0, \frac{1}{3}\right]$.
- b. Montrer que $\forall x \in \left[0, \frac{1}{3}\right], -\beta \le f'(x) \le 0$
- c. En déduire que $\forall n \in \mathbb{N}, \left|u_{n+1} a\right| \leq \beta \left|u_n a\right|$, puis que pour tout $n, \left|u_n a\right| \leq \frac{1}{3}\beta^n$.
- d. En déduire la limite de la suite u.