Chapitre 7 : Espaces probabilisés finis. Feuille n°1

Exercice 1

Une urne contient 9 boules numérotées de 1 à 9.

On tire deux boules. Soit A l'événement : "Les 2 boules sont impaires".

- 1) Dans cette question, on tire les deux boules simultanément.
- a) Déterminer le nombre de résultats possibles.
- b) Déterminer P(A).
- 2) Dans cette question, on tire les deux boules successivement et sans remise (on tiendra compte de l'ordre). Déterminer P(A).
- 3) Dans cette question, on tire une boule, puis on la remet avant de tirer la $2^{\text{ème}}$ boule. Déterminer P(A).

Exercice 2

Dans un jeu de 32 cartes, on tire successivement et sans remise 3 cartes.

- 1) Quel est le nombre de résultats possibles ?
- 2) a) Quelle est la probabilité de n'avoir aucun as ?
- b) Quelle est la probabilité d'avoir au moins un as ?
- c) Quelle est la probabilité d'avoir trois as ?
- d) Quelle est la probabilité d'avoir exactement deux as ?

Exercice 3

Dans un jeu de 32 cartes, on tire successivement 4 cartes en les remettant dans le jeu.

1) Pour $i \in \{1,...,4\}$, on note $B_i =$ "Le premier as apparaît à la i-ème pioche"

On note B = "Le premier as n'apparaît jamais".

Calculer P(B₁), P(B₂), P(B₃), P(B₄), P(B). Vérifier la cohérence de vos résultats.

2) Pour $i \in \{2,..,4\}$, on note C_i = "Le deuxième as apparaît à la i-ème pioche" Déterminer $P(C_2)$, $P(C_3)$, $P(C_4)$.

Exercice 4

Dans une classe de 42 élèves, quelle est la probabilité p₄₂ que tous les anniversaires tombent à des jours différents ? (on considérera que l'année compte 365 jours et que toutes les dates d'anniversaire sont indépendantes et équiprobables).

Exercice 5

Une loterie comporte 100 billets, dont deux sont gagnants. On achète n billets. Déterminer en fonction de n la probabilité p_n d'avoir au moins un billet gagnant.

Exercice 6

Soit $n \ge 1$.

On considère la probabilité P sur $\{1, ..., 2n\}$ telle que : $\forall k \in \{1, ..., 2n\}$ $P(\{k\}) = \lambda \times 3^k$

- 1) Déterminer la valeur de λ .
- 2) Soit A l'événement : "Obtenir un nombre pair". Déterminer P(A).

ECE1: Année 2011-2012