Chapitre 5 Convergence : Feuille d'exercices n°1

Exercice 1

Soit la suite u définie par : \forall n \in IN, $u_n = 4 + \frac{3}{\sqrt{n}}$.

Déterminer la limite de (u_n) . Déterminer un rang n_0 à partir duquel $\left|u_n - 4\right| \le 10^{-4}$

Exercice 2

Soit $u_n = \sqrt{2} - \frac{5}{2^n}$. Déterminer la limite de (u_n) . Déterminer un rang n_0 à partir duquel u_n est une valeur approchée de $\sqrt{2}$ à 10^{-3} près.

Exercice 3

Déterminer les limites des suites suivantes, si elles existent :

$$u_n = (-2)^n \qquad v_n = \left(-\frac{1}{\sqrt{2}}\right)^n \qquad w_n = \frac{(0.95)^n}{(0.7)^{n-5}} \qquad z_n = \frac{3^{n+1}}{2^{2n}} \qquad t_n = (-1)^{2n+1}$$

Exercice 4 Soit $(S_n)_{n \in \mathbb{N}}$ la suite définie par $: S_n = \sum_{k=0}^n \frac{2^k}{3^{k-1}} \forall n \in \mathbb{N}.$

Déterminer la valeur de S_n, puis calculer sa limite.

Exercice 5 Déterminer deux suites u et v telles que :

a)
$$\lim_{n \to +\infty} u_n = +\infty$$
 $\lim_{n \to +\infty} v_n = -\infty$ et $\lim_{n \to +\infty} u_n + v_n = +\infty$

b)
$$\lim u_n = +\infty$$
 $\lim v_n = -\infty$ et $\lim u_n + v_n = -\infty$

$$\begin{array}{lll} a) \lim_{n \to +\infty} u_n = + \infty & \lim_{n \to +\infty} v_n = - \infty & et \lim_{n \to +\infty} u_n + v_n = + \infty \\ b) \lim_{n \to +\infty} u_n = + \infty & \lim_{n \to +\infty} v_n = - \infty & et \lim_{n \to +\infty} u_n + v_n = - \infty \\ c) \lim_{n \to +\infty} u_n = + \infty & \lim_{n \to +\infty} v_n = - \infty & et \lim_{n \to +\infty} u_n + v_n = 5 \end{array}$$

Exercice 6 Déterminer deux suites u et v telles que :

a)
$$\lim_{n \to +\infty} u_n = + \infty$$
 $\lim_{n \to +\infty} v_n = 0$ et $\lim_{n \to +\infty} u_n \times v_n = + \infty$

b)
$$\lim_{n \to +\infty} u_n = +\infty$$
 $\lim_{n \to +\infty} v_n = 0$ et $\lim_{n \to +\infty} u_n \times v_n = 0$

$$\begin{array}{lll} \text{a)} & \lim_{n \to +\infty} u_n = + \infty & \lim_{n \to +\infty} v_n = 0 & \text{et } \lim_{n \to +\infty} u_n \times v_n = + \infty \\ \text{b)} & \lim_{n \to +\infty} u_n = + \infty & \lim_{n \to +\infty} v_n = 0 & \text{et } \lim_{n \to +\infty} u_n \times v_n = 0 \\ \text{c)} & \lim_{n \to +\infty} u_n = + \infty & \lim_{n \to +\infty} v_n = 0 & \text{et } \lim_{n \to +\infty} u_n \times v_n = 5 \end{array}$$

Exercice 7 Déterminer la limite de ces suites (sans utiliser de propriété sur le monôme de plus haut degré).

1)
$$u_n = 1 + n - 3n^2$$
 2) $v_n = \frac{n+1}{n-1}$ 3) $w_n = \frac{n-3}{2n^2 - 5}$ 4) $\sqrt{n^2 + 1} - 2n$

Exercice 8

Calculer, quand elles existent, les limites des expressions suivantes :

1)
$$n - \sqrt{n} + 1$$
 2) $5^n - (-2)^n$

3)
$$\frac{(-3)^n + 4}{7^n}$$

2)
$$5^{n} - (-2)^{n}$$
 3) $\frac{(-3)^{n} + 4}{7^{n}}$ 4) $\frac{1}{\sqrt{n+3} - \sqrt{n-1}}$

5)
$$e^{-1/n^2}$$

$$6) \ln \left(\frac{1+n}{1+n^2} \right)$$