Chapitre 24 : Fonctions à deux variables – Feuille n°1

Exercice 1

Représenter graphiquement dans le plan \mathbb{R}^2 l'ensemble des points (x;y) tels que :

a)
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + 3y - 6 \le 0 \\ 3x + y - 6 \le 0 \end{cases}$$

b) Représenter dans le plan \mathbb{R}^2 l'ensemble des points (x;y) tels que : $\begin{cases} x \le 1 \\ x^2 + v^2 < 4 \end{cases}$

Exercice 2

Déterminer l'ensemble des points M(x,y) du plan tels que : $x^2 + y^2 - 2x + 5y + 6 = 0$

Exercice 3

Soit f la fonction définie sur \mathbb{R}^2 par : $f(x,y) = x^2 + 3y^2 + 2x - 4y$.

En utilisant la forme canonique (en x et en y), montrer que le minimum de f est $-\frac{7}{3}$.

Pour quelle valeur de x et y le minimum est-il atteint ?

Exercice 4

Calculer les dérivées du premier ordre des fonctions suivantes : (on n'étudiera pas l'ensemble de définition et d'existence des dérivées partielles).

$$a(x, y) = y^2 - x^2y + x^4$$
 $b(x, y) = ln(x^2 + y^2)$ $c(x, y) = ye^{-xy}$

$$b(x, y) = \ln(x^2 + y^2)$$

$$c(x, y) = ye^{-xy}$$

Exercice 5

Soit f la fonction définie sur \mathbb{R}^2 par : $f(x,y) = xe^{-(x^2 + y^2)}$

1) Déterminer
$$\frac{\partial f}{\partial x}(x,y)$$
 et $\frac{\partial f}{\partial y}(x,y)$.

2) Déterminer les points critiques de f.

Exercice 6

Même énoncé que l'exercice 5 avec la fonction f définie sur ${\rm I\!R}^2$ par : $f(x,y)=x^3+3xy^2-15x-12y$.

Exercice 7

Pour les fonctions a et b de l'exercice 4, déterminer les dérivées partielles secondes.