Chapitre 23 : Intégration – Feuille n°1

Exercice 1

1) Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = x \ln(x)$

Montrer que la fonction $F(x) = \frac{x^2 \ln(x)}{2} - \frac{x^2}{4}$ est une primitive de f.

2) Soit f la fonction définie sur \mathbb{R} par : $f(x) = (2x - 3)e^{-x}$.

Déterminer les réels a et b pour que $F(x) = (ax + b)e^{-x}$ soit une primitive de f.

Exercice 2

Déterminer une primitive de chacune des fonctions suivantes :

a)
$$f(x) = (x + 1)(x + 2) sur \mathbb{R}$$

b)
$$f(x) = \frac{1}{x^4} sur \]0; + \infty[$$

a)
$$f(x) = (x + 1)(x + 2) \text{ sur } \mathbb{R}$$
 b) $f(x) = \frac{1}{x^4} \text{ sur }]0; + \infty[$ c) $f(x) = \frac{1}{x\sqrt{x}} \text{ sur }]0; + \infty[$

d)
$$f(x) = \frac{2}{(3x-1)^2} \text{ sur }]-\infty; \frac{1}{3}[$$
 e) $f(x) = \frac{1}{3x+4} \text{ sur }]-\infty; -\frac{4}{3}[$ f) $f(x) = e^{-2x} \text{ sur } \mathbb{R}$

e)
$$f(x) = \frac{1}{3x+4} \text{ sur }]-\infty; -\frac{4}{3}[$$

f)
$$f(x) = e^{-2x} sur \mathbb{R}$$

g)
$$f(x) = xe^{-x^2} sur \mathbb{R}$$

h)
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} sur II$$

h)
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \text{ sur } \mathbb{R}$$
 i) $f(x) = \frac{\ln(x)}{x} \text{ sur }]0; + \infty[$

j)
$$f(x) = \frac{x^2}{\sqrt{1+x^3}} \text{ sur }]-1;+\infty[$$
 k) $f(x) = x(x^2-1)^5 \text{ sur } \mathbb{R}$

k)
$$f(x) = x(x^2 - 1)^5 \text{ sur } \mathbb{R}$$

Exercice 3 A l'aide de l'exercice 2, déterminer :

$$I_1 = \int_{-1}^{1} (x+1)(x+2)dx \qquad I_2 = \int_{1}^{e} \frac{\ln(x)}{x} dx \qquad I_3 = \int_{0}^{\ln(2)} \frac{e^t - e^{-t}}{e^t + e^{-t}} dt$$

$$I_2 = \int_1^e \frac{\ln(x)}{x} dx$$

$$I_3 = \int_0^{\ln(2)} \frac{e^t - e^{-t}}{e^t + e^{-t}} dt$$

Exercice 4

Soit f la fonction définie sur $\mathbb{R} - \{-1,2\}$ par : $f(t) = \frac{2t^3 + 6t^2 + 9t - 4}{(t+1)^2(t-2)}$

- 1) Déterminer des réels a, b, c, tels que : $\forall t \neq -1,2$ $f(t) = a + \frac{b}{(t+1)^2} + \frac{c}{t-2}$
- 2) Déterminer $I = \int_0^1 f(t)dt$

Exercice 5 Etudier la monotonie des suites suivantes :

$$a_n = \int_0^n \exp(-t^2) dt \ (n \in \mathbb{N})$$

$$a_n = \int_0^n \exp(-t^2) dt \ (n \in \mathbb{N})$$
 $b_n = \int_0^{1/n} \frac{x}{1+x^3} dx \ (n \in \mathbb{N}^*)$

Exercice 6 Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \ln(1 + x^n) dx$.

- 1) Vérifier que : $\forall x \in [0; +\infty[, 0 \le \ln(1+x) \le x]$.
- 2) En déduire que \forall $n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n+1}$, puis calculer $\lim_{n \to +\infty} I_n$