Chapitre 21 : V.A.R. discrètes – Feuille n°2

Rappel : Pour les exercices de la feuille n°1, nous avons obtenu comme lois de probabilité :

Exercice 1:
$$X(\Omega) = \{1, 2, ...\}$$
 $\forall k \ge 1, P(X = k) = \left(\frac{2}{3}\right)^{k-1} \frac{1}{3}$
Exercice 2: $X(\Omega) = \{2, 3, ...\}$ $\forall k \ge 2, P(X = k) = q^{k-1}p + p^{k-1}q$ avec $p \in [0; 1[$ et $q = 1 - p$.
Exercice 4: $X(\Omega) = \{2, 3, ...\}$ $\forall n \ge 2, P(X = n) = \frac{2}{3} \left(\frac{2}{3}\right)^n + \frac{4}{3} \left(-\frac{1}{3}\right)^n$

Exercice 1

Pour les exercices 1, 2 et 4 de la feuille $n^{\circ}1$, montrer que X admet une espérance et calculer E(X).

Exercice 2

Soit X la V.A.R. définie dans l'exercice 1 feuille n°1. Montrer que Y = 2 - 3X et Z = X(X - 1) admettent chacune une espérance que l'on calculera.

Exercice 3

Pour l'exercice 1 de la feuille $n^{\circ}1$, montrer que X admet une variance et calculer V(X).

Exercice 4

Considérons toujours la variable aléatoire X définie dans l'exercice 1 feuille 1. (Une urne contient 10 boules rouges et 5 boules vertes. On tire une boule en la remettant à chaque fois, jusqu'à obtenir une boule verte. X est le nombre de tirages nécessaires).

- 1) Reconnaître la loi de X et retrouver son espérance et sa variance.
- 2) Soit $k \in \mathbb{N}^*$. Exprimer l'événement $(X \le k)$ en fonction d'événements (X = ...). En déduire $P(X \le k)$.
- 3) Déterminer P(X > k) sans utiliser la question 2, et sans utiliser de somme.

Vérifier la cohérence de votre résultat avec la question 2.

- 4) Soient m,n deux entiers tels que $m \le n$. Déterminer $P(m \le X \le n)$.
- 5) Compléter le programme Pascal suivant, pour qu'il simule la variable aléatoire X:

On rappelle que si $p \in [0;1]$, l'évenement random < p a pour probabilité p.

```
program geometrique;
var x : integer;
begin
randomize;
...
...
writeln('x vaut ',x);
readln;
```

6) On note Y le nombre de boules rouges tirées avant d'obtenir une boule verte. Exprimer Y en fonction de X et en déduire E(Y) et V(Y).