Chapitre 13 : Dérivée d'une fonction

1. Dérivée en un point

1.1 Dérivabilité en un point

Définition : Soit f une fonction définie sur un intervalle I, et $a \in I$.

Si $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe dans \mathbb{R} , on dit que f est dérivable en a.

Dans ce cas, on note f'(a) = $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$. f'(a) est appelé le nombre dérivé de f en a.

De même, si $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe, on définit la dérivée à gauche en a en posant $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ $g = \frac{f(x) - f(a)}{x - a}$. (de même à droite).

Remarques:

_ En posant x = a + h (h = x - a), on a aussi :

 $f \text{ est d\'erivable en } a \Leftrightarrow \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \text{ existe. Et dans ce cas, } f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

 $-\frac{f(x)-f(a)}{x-a}$ est appelé taux de variation de f entre a et x.

Exemples:

1) f définie par : $f(x) = x^2 + 3x - 1$

f dérivable en 2 ? f(2) = 9 $\frac{f(x) - f(2)}{x - 2} = \frac{x^2 + 3x - 1 - 9}{x - 2} = \frac{x^2 + 3x - 10}{x - 2}$ (F.I.)

$$= \frac{(x-2)(x+5)}{x-2} = x+5 \qquad \text{donc } \lim_{x \to 2} \frac{f(x)-f(2)}{x-2} = 2+5=7 \quad \text{donc f est dérivable en 2 et f'(2)}$$

= 7.

(avec formules de Term :
$$f'(x) = 2x + 3$$
 $f'(2) = 7$)
2) $f \begin{cases} [0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x} \end{cases}$ dérivable en 0 ?

$$\frac{f(x) - f(0)}{x - 0} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}} \quad \lim_{x \to 0} \frac{1}{\sqrt{x}} = + \infty \text{ donc f n'est pas dérivable en 0.}$$

3) f définie sur
$$[0; +\infty[$$
 par : $\begin{cases} f(x) = x^2 \ln(x) \text{ si } x > 0 \\ f(0) = 0 \end{cases}$. f est-elle dérivable en 0 ?
$$\frac{f(x) - f(0)}{x - 0} = \frac{x^2 \ln(x) - 0}{x} = x \ln(x) \lim_{x \to 0} x \ln(x) = 0 \text{ (croissances comparées), donc f est dérivable}$$

$$\frac{f(x) - f(0)}{x - 0} = \frac{x^2 \ln(x) - 0}{x} = x \ln(x) \lim_{x \to 0} x \ln(x) = 0 \text{ (croissances comparées), donc f est dérivable en 0 et f '(0) = 0.}$$

Remarque : Dans la recherche de limite, il est parfois intéressant de reconnaître la forme d'un taux de variation : $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

Exemple:
$$\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1}$$
: F.I. avec $f(x) = \sqrt{x}$ $\frac{\sqrt{x-1}}{x-1} = \frac{f(x) - f(1)}{x-1}$ $f'(x) = \frac{1}{2\sqrt{x}}$

Or
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$$
 donc $\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \frac{1}{2\sqrt{1}} = \frac{1}{2}$ (vérifier par forme conjuguée).

Propriété : Si f est dérivable en a, alors f est continue en a.

Démonstration : pour
$$x \ne a$$
, $f(x) = f(x) - f(a) + f(a) = \frac{f(x) - f(a)}{x - a}(x - a) + f(a)$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}(x - a) = f'(a) \times 0 = 0 \text{ donc } \lim_{x \to a} f(x) = f(a)$$

Remarque : la réciproque est fausse ! f peut être continue sans être dérivable. $x \mapsto \sqrt{x}$ est continue en 0, mais pas dérivable. Idem pour la valeur absolue.

Propriété: Développement limité d'ordre 1 de f en a Si f est dérivable en a, alors $f(x) =_a f(a) + (x - a)f'(a) + o(x - a)$

Démonstration : $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$ donc il existe une fonction g telle que :

$$\forall \ x \neq a, \frac{f(x) - f(a)}{x - a} = f'(a) + g(x) \text{ avec } \lim_{x \to a} g(x) = 0.$$

$$\text{Donc } f(x) - f(a) = f'(a)(x - a) + (x - a)g(x) \quad f(x) = f(a) + (x - a)f'(a) + (x - a)g(x)$$

$$\text{Or } \lim_{x \to a} \frac{(x - a)g(x)}{(x - a)} = \lim_{x \to a} g(x) = 0 \text{ donc } (x - a)g(x) = o(x - a) \text{ CQFD.}$$

Remarque : f(a) + f'(a)(x - a) est donc une bonne approximation de f au voisinage de a (on parle d'approximation affine de f en a). Cette approximation sera utilisée dans la méthode de Newton (cf cours d'informatique).

1.2 Tangente

Définition : Si f est dérivable en a, alors on appelle tangente de C_f au point d'abscisse a la droite (T) qui passe par le point A(a;f(a)) et qui a pour coefficient directeur f '(a).

Propriété : L'équation de (T) est alors : y = f'(a)(x - a) + f(a).

Démonstration : (T) a pour équation y = mx + pD'après la définition m = f'(a) donc $y = f'(a) \times x + p$ Comme (T) passe par A (a, f(a)), on a : $f(a) = f'(a) \times a + p$ donc $p = f(a) - f'(a) \times a$ Donc (T) a pour équation : y = f'(a)x + f(a) - f'(a)a = f'(a)(x - a) + f(a).

Exemple:
$$f(x) = x^2 + 3x - 1$$
 $f(2) = 9$ $f'(2) = 7$
Equation de la tangente: $y = f'(2)(x - 2) + f(2) = 7(x - 2) + 9 = 7x - 5$

Remarques:

_ si f est dérivable à gauche (à d.), on dit que C_f admet une demi-tangente à gauche (à droite)

_ si
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \infty$$
, on dit que C_f admet une tangente verticale (d'équation $x = a$).

_ l'expression de la tangente est l'approximation affine de f. La tangente est la droite qui "approche" le mieux la courbe au voisinage de A(a;f(a)).

 $f'(a) = 0 \Leftrightarrow C_f$ admet une tangente horizontale en a.

_ Lors du tracé d'une courbe après l'étude d'une fonction, les tangentes horizontales et les tangentes trouvées précédemment doivent obligatoirement apparaître! (double flèche)

_ la courbe doit être effectivement tangente à ses tangentes.

2. Dérivée sur un intervalle

Définition:

Soit f une fonction définie sur un intervalle I.

Si, pour tout $a \in I$, f est dérivable en a, alors on dit que f est dérivable sur I.

Si f est dérivable sur I, on appelle fonction dérivée de f la fonction, notée f ', qui à tout $x \in I$ associe le nombre dérivé de f en x.

Remarque : f '(x) est aussi notée $\frac{df}{dx}$

2.1 Dérivées des fonctions usuelles

Propriété:

f	dérivable sur	f'
$f(x) = x^{\alpha}, \alpha \in \mathbb{R}^*$	\mathbb{R} , si $\alpha \in \mathbb{N}$	$f'(x) = \alpha x^{\alpha - 1}$
	$]-\infty;0[\text{ et }]0;+\infty[,\text{ si }\alpha\in\mathbf{Z}-\mathbb{N}]$	
]0; +∞[sinon	
$f(x) = e^x$	I R	$f'(x) = e^x$
$f(x) = \ln(x)$]0; +∞[$f'(x) = \frac{1}{x}$

Exemples :
$$f(x) = \sqrt{x} = x^{1/2}$$
 pour $x > 0$ f' $(x) = \frac{1}{2}x^{1/2 - 1} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$ $f(x) = \frac{1}{x^2} = x^{-2}$ f' $(x) = -2x^{-2-1} = -2x^{-3} = \frac{-2}{x^3}$

2.2 Opérations sur les fonctions dérivables

Propriété:

Si u et v sont deux fonctions dérivables sur I et si $\lambda \in \mathbb{R}$, alors

u + v, λu , $u \times v$, u^2 , $\frac{1}{v}$ (si v ne s'annule pas) et $\frac{u}{v}$ (si v ne s'annule pas) sont dérivables sur I et :

$$(u+v)' = u' + v' \qquad (\lambda u)' = \lambda \ u' \qquad (uv)' = u'v + uv' \quad (u^2)' = 2uu' \quad \left(\frac{1}{v}\right)' = -\frac{v'}{v^2} \quad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Démonstration : Soit $a \in I$

Posons f = u + v

$$\frac{f(x) - f(a)}{x - a} = \frac{u(x) + v(x) - (u(a) + v(a))}{x - a} = \frac{u(x) - u(a)}{x - a} + \frac{v(x) - v(a)}{x - a} \text{ donc tend vers } u'(a) + v'(a)$$

Posons $f = \lambda u$

$$\frac{f(x) - f(a)}{x - a} = \frac{\lambda u(x) - \lambda u(a)}{x - a} = \lambda \frac{u(x) - u(a)}{x - a} \text{ tend vers } \lambda \text{ u '}(a)$$

Posons f = uv

$$\begin{split} \frac{f(x) - f(a)}{x - a} &= \frac{u(x)v(x) - u(a)v(a)}{x - a} = \frac{u(x)(v(x) - v(a)) + u(x)v(a) - u(a)v(a)}{x - a} \\ &= u(x)\frac{v(x) - v(a)}{x - a} + v(a) \times \frac{u(x) - u(a)}{x - a} \end{split}$$

u est dérivable, donc continue en a : $\lim u(x) = u(a)$

donc tend vers u(a)v'(a) + v(a)u'(a)

avec v = u, on obtient : $(u \times v)' = u \cdot u + u \cdot u' = 2 \cdot u \cdot u'$

Posons
$$f = \frac{1}{v}$$

$$\frac{f(x) - f(a)}{x - a} = \frac{\frac{1}{v(x)} - \frac{1}{v(a)}}{x - a} = \frac{\frac{v(a) - v(x)}{v(a)v(x)}}{x - a} = -\frac{1}{v(a)v(x)} \times \frac{v(x) - v(a)}{x - a} \text{ tend vers } -\frac{1}{v(a)^2} \times v'(a)$$

$$\left(\frac{u}{v}\right)' = \left(u \times \frac{1}{v}\right)' = u' \times \frac{1}{v} + u \times \left(\frac{1}{v}\right)' = \frac{u'}{v} - u \cdot \frac{v'}{v^2} = \frac{u'v - uv'}{v^2}$$

Exemple: $f(x) = x^2 \ln(x)$ sur $]0; +\infty[$ f est dérivable comme produit de fonctions dérivables. $f'(x) = 2x\ln(x) + x^2 \times \frac{1}{x} = 2x\ln(x) + x.$

Propriété (dérivée d'une composée) :

Soit u est une fonction définie sur un intervalle I et v une fonction définie sur un intervalle J tel que $f(I) \subset J$. Soit $a \in I$.

Si u est dérivable en a et si si v est dérivable en f(a) alors v o u est dérivable en a $(\mathbf{v} \circ \mathbf{u})'(\mathbf{a}) = \mathbf{u}'(\mathbf{a}) \times \mathbf{v}(\mathbf{u}(\mathbf{a})) \qquad ((\mathbf{v} \circ \mathbf{u})' = \mathbf{u}' \times \mathbf{v}' \circ \mathbf{u})$

Démonstration:

$$\frac{f(x)-f(a)}{x-a} = \frac{v(u(x))-v(u(a))}{x-a} = \frac{v(u(x))-v(u(a))}{u(x)-u(a)} \times \frac{u(x)-u(a)}{x-a}$$
 u continue en a donc $\lim_{x\to a} u(x) = u(a)$. Posons $u(a) = b$.

Comme
$$\lim_{X \to b} \frac{v(X) - v(b)}{X - b} = v'(b) = v'(u(a))$$
, on obtient la formule

Corollaire:

Si u est une fonction dérivable sur I, alors :

 $_ \forall n \in \mathbb{N}, u^n \text{ est dérivable sur } I \text{ et } (u^n)' = u' \times nu^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ si } u(x) > 0 \ \forall u^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ si } u(x) > 0 \ \forall u^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ si } u(x) > 0 \ \forall u^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ si } u(x) > 0 \ \forall u^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ si } u(x) > 0 \ \forall u^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ si } u(x) > 0 \ \forall u^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ si } u(x) > 0 \ \forall u^{n-1} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem avec } u^\alpha \text{ avec } \alpha \in \mathbb{R} \text{ (idem ave$

En particulier :
$$(u^2)' = 2uu' \quad (\sqrt{u})' = \frac{u'}{2\sqrt{u}} \quad (\frac{1}{u})' = -\frac{u'}{u^2}$$

 $_\exp(u)$ est dérivable sur I et $(\exp(u))' = u' \times \exp(u)$

_ si u ne s'annule pas sur I, $\ln(|u|)$ est dérivable sur I et $(\ln(|u|))' = \frac{u'}{u}$

Exemple : Soit
$$f(x) = \left(\frac{1-x}{1+x}\right)^3 \text{ sur }]-\infty;-1[\ \cup\]-1; +\infty[\ f(x) = u(x)^3]$$

f est dérivable comme composée de fonctions dérivables et $\forall x \neq -1$, $f'(x) = 3 \times u'(x) \times u(x)^2$

$$u'(x) = \frac{-(1+x) - (1-x)}{(1+x)^2} = \frac{-2}{(1+x)^2} \quad \text{donc } f'(x) = \frac{-6}{(1+x)^2} \times \left(\frac{1-x}{1+x}\right)^2$$

2.3 Dérivée d'une réciproque

Propriété:

Soit f une fonction bijective de I sur J.

Si f est dérivable sur I alors en tout $y \in J$ tel que f'($f^1(y)$) $\neq 0$, f^1 est dérivable en y et

$$(f^{-1})'(y) = \frac{1}{f(f^{-1}(y))}$$

Donc si f' ne s'annule pas sur I, f^1 est dérivable sur J.

Démonstration:

Demonstration:
Soit
$$b \in J$$
 tel que $f'(f^{-1}(b)) \neq 0$. Posons $a = f^{-1}(b) \iff b = f(a)$

$$\frac{f^{-1}(y) - f^{-1}(b)}{y - b} = \frac{1}{\frac{y - b}{f^{-1}(y) - f^{-1}(b)}} = \frac{1}{\frac{f(f^{-1}(y)) - f(a)}{f^{-1}(y) - a}}$$

f est continue sur I, donc f^1 est continue sur J donc $\lim_{y \to b} f^1(y) = f^1(b) = a$.

Or
$$\lim_{X \to a} \frac{f(X) - f(a)}{X - a} = f'(a)$$
. Donc $\lim_{y \to b} \frac{f^{1}(y) - f^{1}(b)}{y - b} = \frac{1}{f'(a)} = \frac{1}{f'(f^{1}(b))}$

Illustration graphique:

 C_f^{-1} est l'image de C_f par la droite d'équation y = x.

Soit $a \in I$ et b = f(a).

_ Si (T) est une tangente horizontale, son image est une tangente verticale.

Donc si f '(a) = 0, f^{-1} n'est pas dérivable en b = f(a).

_ Une tangente (T) de coefficient directeur m $\neq 0$ a pour image une tangente de coefficient

directeur $\frac{1}{m}$. Donc si (T_f) a pour coefficient directeur f '(a), (T_{f-1}) a pour coefficient directeur

$$\frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

Conclusion:

Si on a f(a) = b

_ si f '(a)
$$\neq$$
 0, alors f⁻¹ est dérivable en b et (f⁻¹)'(b) = $\frac{1}{f'(a)}$

_ Si f '(a) = 0 alors f⁻¹ n'est pas dérivable en b. C_{f-1} admet une tangente verticale en b.

Exemples:

_ exp réalise une bijection de \mathbb{R} sur]0; + ∞[. De plus, $\forall x \in \mathbb{R}$, exp'(x) = exp(x) ≠ 0. Donc la

fonction réciproque, ln, est dérivable sur $]0; +\infty[$, et $\forall x \in]0; +\infty[$, $\ln'(x) = \frac{1}{\exp(\ln(x))} = \frac{1}{x}$

 $f(x) = \frac{1}{3}x^3 - x^2 + x$ On suppose qu'on a montré que f bijection de \mathbb{R} sur \mathbb{R}

Soit g son application réciproque.

$$f'(x) = x^2 - 2x + 1 = (x - 1)^2$$
 donc f'' s'annule en 1.

$$f(1) = \frac{1}{3}$$
 donc g est dérivable sur $\mathbb{R} - \{1/3\}$ et $\forall y \in \mathbb{R} - \{1/3\}$, $g'(y) = \frac{1}{f'(g(y))} = \frac{1}{(g(y) - 1)^2}$

En 1/3, C_g admet une tangente verticale.

3. Fonctions C^p , C^{∞}

Définition:

Soit f une fonction définie sur un intervalle I.

_ Si f est une fonction dérivable sur I et si f ' est elle-même dérivable sur I, on dit que f est deux fois dérivable sur I, et la dérivée de f ', notée f " ou $f^{(2)}$ est appelée dérivée d'ordre 2 de f. _ On peut définir de la même manière $f^{(3)}$, ..., $f^{(n)}$ De manière générale $f^{(n+1)} = f^{(n)}$

Exemple:

$$f(x) = x^3 + 3x^2 - 2x + 1$$
 $f'(x) = 3x^2 + 6x - 2$ $f'''(x) = 6x + 6$ $f^{(3)}(x) = 6$ $f^{(4)}(x) = 0...$

Définition:

- _ Si f est continue sur I, on dit que f est C⁰ sur I.
- _ Si f est dérivable sur I et si f 'est continue sur I, alors on dit que f est de classe C^1 sur I. _ Si $n \in \mathbb{I}N$, si f est n-fois dérivable sur I et si $f^{(n)}$ est continue sur I, on dit que f est de classe
- _ si \forall n ∈ \mathbb{N} , f est de classe \mathbb{C}^n , on dit que f est de classe \mathbb{C}^{∞} .

Propriété:

Les polynômes, la fonction exp sont de classe \mathbb{C}^{∞} sur \mathbb{R} , la fonction ln est \mathbb{C}^{∞} sur $]0; +\infty[$.

Propriété:

Soit n un entier naturel ou $+\infty$.

La somme, le produit, le quotient (s'il existe), la composée (si elle existe) de deux fonctions de classe Cⁿ est une fonction de classe Cⁿ.

Ex : la fonction $f(x) = x^2 \ln(x)$ est C^{∞} sur $]0; +\infty[$ comme produit de fonctions C^{∞}

ECE1 : Année 2011-2012